Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion.

نویسندگان

  • Zhao Zhao
  • Jinglin Fu
  • Soma Dhakal
  • Alexander Johnson-Buck
  • Minghui Liu
  • Ting Zhang
  • Neal W Woodbury
  • Yan Liu
  • Nils G Walter
  • Hao Yan
چکیده

Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of TiO2-Nanoparticle on the Activity and Stability of Trypsin in Aqueous Medium

Trypsin (E.C.3.4.21.4) is a serine protease commonly used in proteomics for digestion of proteins. In the present study, the effect of nano-TiO2 on the conformation and catalytic activity of trypsin were studied. The thermal denaturation of trypsin has been investigated in the presence and absence of nano-TiO2 over the temperature range (293-373 K) at pH 3.0 and 7.25, using temperature scanning...

متن کامل

Enhanced Production and Characterization of a Highly Stable Extracellular Protease from an Extreme Halophilic Isolate Salicola marasensis

Owing to their superior catalytic activity in the extreme conditions, extremozymes have found the potential biotechnological applications for industrial purposes. A robust extracellular protease activity was detected in the culture broth of Salicola marasensis, an extreme halophilic bacterium, after a 48 h-incubation. The effect of different media ingredients in a liquid state fermentation was ...

متن کامل

Enhanced Production and Characterization of a Highly Stable Extracellular Protease from an Extreme Halophilic Isolate Salicola marasensis

Owing to their superior catalytic activity in the extreme conditions, extremozymes have found the potential biotechnological applications for industrial purposes. A robust extracellular protease activity was detected in the culture broth of Salicola marasensis, an extreme halophilic bacterium, after a 48 h-incubation. The effect of different media ingredients in a liquid state fermentation was ...

متن کامل

Molecular Engineering of the Geobacillus stearothermophilus α-Amylase and Cel5E from Chlostridium thermocellim; In Silico Approach

Background: Considering natural thermal stability, Geobacillus stearothermophilus amylase and Cel5E from Clostridium thermocellum are good candidates for industrial applications. To be compatible with the industrial applications, this enzyme should be stable in the high temperatures, so any improvement in their thermal stability is valuable.Objectives: Us...

متن کامل

Study on Activity and Stability of Proteases from Bacillus Sp. Produced by Submerged Fermentation

Objective: Investigations were carried out to isolate bacteria from saline-alkali soils and determined optimized alkaline protease activity and stability produced by a wild strain of bacillus sp. in submerged fermentation (SMF). Methods: Optimum temperature for enzyme activity in the crude extract was 40 ◦C at a pH between 8.0 and 9.0. The studies on pH stability showed that the enzyme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016